Exercise 2.7.4

For each of the following vector fields, plot the potential function $V(x)$ and identify all the equilibrium points and their stability.

$$
\dot{x}=2+\sin x
$$

Solution

The potential function $V(x)$ satisfies

$$
\dot{x}=2+\sin x=-\frac{d V}{d x} .
$$

Multiply both sides by -1 .

$$
\frac{d V}{d x}=-2-\sin x
$$

Integrate both sides with respect to x, setting the integration constant to zero.

$$
V(x)=-2 x+\cos x
$$

The graph of $V(x)$ versus x is to be thought of as a two-dimensional rollercoaster. A particle placed anywhere on the curve will roll indefinitely to the right because the slope is never zero; in other words, there are no equilibrium points.

